

Dealing with Uncertainty: Using Scenario-Planning to Assess Risk and Develop Management Solutions in a Changing Climate

Robert Glazer, Florida Fish and Wildlife Conservation Commission
Mike Flaxman, Juan Luis Vargas, MIT
Roger Griffis, NOAA
Chris Bergh, The Nature Conservancy of the Florida Keys

What is Scenario Planning?

 Developed during the cold war to prepare for a number of possible outcome

What are Alternative Future Scenarios?

IPCC Scenarios are another example:

Uncertainty

Dimensions

- Climate
- Political
- Economic
- Conservation
- ...others

Scenario A Land Cover 2060

Land Use Composition 2060

Total Land Use Area (In millions of acres)	2020	2040	2060
Agriculture	6.19	5.52	4.69
Conservation	6.00	6.16	6.32
Urban	4.51	5.20	5.98
Sea Level Rise	0.33	0.38	0.44
Other	2.26	2.03	1.86

Scenario B Land Cover 206

Land Use Composition 2060

Total Land Use Area (in millions of acres)	2020	2040	:
Agriculture	6.00	4.96	3.
Conservation	6.50	7.65	8.
Urban	4.29	4.47	4.
Sea Level Rise	0.33	0.38	0.
Other	2.18	1.83	1.

Scenario C Land Cover 2060

Land Use Composition 2060

Total Land Use Area (in millions of acres)	2020	2040	2060
Agriculture	6.19	5.51	4.66
Conservation	5.77	5.40	5.40
Urban	4.48	5.09	5.81
Sea Level Rise	0.63	1.34	1.64
Other	2.22	1.95	1.77

Scenario E Land Cover 2060

Land Use Composition 2060

Total Land Use Area (in millions of acres)	2020	2040	2060
Agriculture	6.05	5.04	3.87
Conservation	6.12	6.40	6.69
Urban	4.47	5.10	5.83
Sea Level Rise	0.44	0.82	1.20
Other	2.21	1.92	1.70

Scenario I Land Cover 2060

Land Use Composition 2060

Total Land Use Area (in millions of acres)	2020	2040	2060
Agriculture	6.12	5.38	4.54
Conservation	5.97	5.99	6.39
Urban	4.37	4.70	5.05
Sea Level Rise	0.63	1.34	1.64
Other	2.21	1.87	1.67

Conservation Urban

Agriculture

Map Legend Current Land Use

Figure 10: MIT Scenario Summary

Projected Land Use

Agriculture

Conservation

Urban

Crocodile Distribution 2060

Sea Level Rise

Low Medium

High

How Alternative Future Scenarios are Used in the Terrestrial Climate Change Adaptation Planning

KEYSMAP (Florida Keys Marine Adaptation Planning)

The KeysMAP Study Area

Workshop-Driven Process

Workshop 1 - Managers Develop Scenarios

Workshop 2 – Habitat Specialists Examine Effects on Habitats

Workshop 3 – Species Specialists Examine Effects on Species

Workshop 4 - Managers Reconvene to Discuss Management Options under the Different Scenarios

The Dimensions of KeysMAP

Habitats Under Consideration

Species Under Examination

The Conceptual Approach (Step 1)

Make Adjustments as Necessary

The Conceptual Approach (Step 2)

A KeysMAP Example Monitoring for Change

(spiny lobster)

Larvae are limited by

- 1. Salinity
- 2. Temperature

...under Sea Level Rise

Management Action - Change Harvest Regime

Take Home Messages

- Spatial scenario planning can
 - 1. Account for multiple sources of uncertainty
 - 2. Be flexible and updated as new data become available and new policies are developed
 - 3. Provide a framework for monitoring programs to trigger management actions
 - 4. Spatial scenario planning can provide a framework for managers to think outside the box

Thanks

